

Three-Dimensional Ground-Water Flow Modeling for Management of Water Resources at Lake Mead National Recreation Area

YOUR AMERICA

Richard Waddell & Guy Roemer, GeoTrans, Inc.

William P. Van Liew, WRD

Background

- Groundwater production in southern Nevada has primarily been from basinfill deposits
- Limited production has occurred from the regionally extensive carbonate aquifer

YOUR AMERICA

Issue

- The Lake Mead National Recreational Area has responsibility for springs and habitat dependent on groundwater discharge that are threatened by groundwater development
- Nevada has used topographic basins and local recharge estimates to manage a groundwater resource characterized by interbasin flow

YOUR AMERICA

Issue

- Rapid growth of demand for water in Las Vegas and southern Nevada
- The large volume of water stored in the carbonate aquifer is an important resource

Issue

- BUT, the water in storage cannot be pumped without decreasing discharge from the groundwater system
- The relevant questions are
 - Where?
 - How much?
 - What level of reduction is significant?

Thick basin-fill deposits and other relatively impervious rocks

EXPERIENCE YOUR AMERICA

Springs in the Overton Arm Area of Lake Mead

EXPLANATION

Study Area

Trace of Cross Section

Spring 11 – Rogers Spring 8 - Blue Point Spring

Consolidated Rock

Basin Fill

Geology modified from Plume and Carlton (1988) Base modified from USGS digital data, 1:100,000 and USGS GAP Analysis data.

Groundwater Hydrology 101

- Water balance
 - sources
 - users
- Pipes and reservoirs

Water Sources

- Precipitation is limited, with groundwater recharge primarily derived from snowmelt and stormwater runoff
- Precipitation is greater at higher elevations
- Estimates of basin recharge rates are primarily based on discharge estimates

Recharge is estimated as a function of the annual precipitation depth

Pipes and Reservoirs

- Aquifers
 - Paleozoic carbonates
 - Basin-fill sands and gravels
 - Volcanic lavas and tuffs
- Confining beds
 - Proterozoic siliciclastics
 - Fine-grained basin fill
 - Mesozoic clastics

New map being published by Nevada Bureau of Mines, supported by NPS and SNWA

Major Structural Elements and Generalized Hydrogeologic Units

YOUR AMERICA

13 points in this area, numbers: 1a, 2a, 3a, 4a, 5a, 6a, 7a, 8a, 9a, 10a, 11a, 12a, 13a

Preliminary Model

- Developed in "emergency" mode for use in water rights hearings during the summer of 2001
- Collaborative effort of NPS and FWS
- Based on geologic datasets developed by DoI contractor in early 1990's

Outline of the Preliminary Model

YOUR AMERICA

MODFLOW

- Preprocessors used to develop BCF datasets (currently implemented as the HUF package in MODFLOW-2000)
- Stream Routing package for the Muddy River and associated springs
- DRAIN package for other springs
- GHB for Lake Mead and flux across the Las Vegas Valley Shear Zone
- HFB for barrier faults

Model Calibration

- "Steady-state"
 - Water levels
 - Muddy River discharge
- Pumping
 - Water-level change
 - Decline in Muddy River discharge

Steady-State
Carbonate
Water
Levels

Predicted
Drawdown
(ft) from
CSV
pumping, all
permits and
applications,
in 2030

YOUR AMERICA

Order 1169

- Separate hearings for applications by SNWA/LVVWD and Coyote Springs Investments
- Nevada State Engineer issued Order 1169, mandating further studies, including a multi-year pumping test in Coyote Springs Valley with monitoring in the Muddy River Springs area
- Separate from a prior agreement between DoI agencies and SNWA

Monitoring and pumping wells associated with the Order 1169 study

YOUR AMERICA

Effects of Calpine Pumping at 20 cfs on Muddy River Discharge

Recent and On-going NPS-sponsored studies

- Geologic framework
- Water budget
- Geochemistry
- Model Development

Geologic Framework

- Geophysics
 - Gravity data collection and interpretation
 - Seismic reflection interpretation
- Geologic
 - Compilation of a consistent map
 - Cross sections

Gravity
measurements
provide an
estimate of the
depth to higher
density
"basement" rocks

0

100 KM

GMT 2003 Oct 1 14:42:27 seismic_lines.topo.shaded.ps

Water Budget

EXPERIENCE YOUR AMERICA

- Gain-loss studies on Muddy and Virgin Rivers
- Spring discharge monitoring
- Stream flow monitoring on the Muddy and Virgin Rivers
- ET measurements
 - Virgin River
 - Muddy River

YOUR AMERICA

ET Site over dense meadow vegetation,

Energy Balance calculations are used to determine the rates of evapotranspiration of different plant communities

Geochemistry

EXPERIENCE YOUR AMERICA

- Interpretation of existing data to independently estimate flow paths
- Collection of samples from new wells

YOUR AMERICA

Model Development

- Construct new geologic framework model based on the recent work
- Enlarge model area to include the Virgin Valley
- MODFLOW-2000

The grid of the new model is being designed to allow coupling to the recently released USGS model of the Death Valley area

Current Status

- Geologic framework model under development
- Water-level and discharge data continually being updated
- Expect to construct model and begin calibration in approximately 6 months

Summary

- A predictive model is being developed as a tool for NPS managers responsible for Park Service resources
 - Long-term predictions
 - Cumulative effects
- Data are needed to decrease the uncertainty in the model predictions, and also serve to increase NPS standing with the Nevada State Engineer